Automated, fast, multi-timescale, Time Series Al

Charu Singh, Keval Bhanushali, Vukasin Toroman, Dan Kearns, Nikunj Mehta

Falkonry: Making Smart Easy

<u>Automatically</u> watch time series data to identify events <u>you can't see</u> and speed up action

Find complex events

Understand hidden causes

Smart factory use cases in semi fabs

PREDICTIVE MAINTENANCE

Etching, CMP, Deposition

VIRTUAL METROLOGY

Defectivity Analysis

ROOT CAUSE ANALYSIS

Delamination (Deposition)

Previous Smart Factory approach was ground truth dependent

Failure Prediction Workflow:

- 1) Collect sensor and ground truth data
- 2) Understand historical system behavior
- 3) Separate pre-failure from normal behavior
- 4) Verify on a different known event
- 5) Deploy against streaming data

- 1. Motivation
 - a. Smart Factory needs and challenges
 - b. Conventional FDC approach
 - c. Data science makes it worse
- 3. Time Series Al
 - a. Autoencoder approach
 - b. Al inputs and
 - c. Learning data volume
- 5. Conclusions
 - a. Al to improve human productivity
 - b. Advantages of Time Series Al
 - c. Future Work

- 2. Goals and objectives
 - a. Better FDC automation goals
 - b. AI FDC approach

- 4. Time Series Al results
 - a. Time-oriented anomaly
 - b. Time-frequency anomaly
 - c. Frequency anomaly

- 1. Motivation
 - a. Smart Factory needs and challenges
 - b. Conventional FDC approach
 - c. Data science makes it worse
- 3. Time Series Al
 - a. Autoencoder approach
 - b. Al inputs and
 - c. Learning data volume
- 5. Conclusions
 - a. Al to improve human productivity
 - b. Advantages of Time Series A
 - c. Future Work

- Goals and objectives
 - Better FDC automation goals
 - b. AI FDC approach

- Time Series Al results
 - a. Time-oriented anomaly
 - b. Time-frequency anomaly
 - c. Frequency anomaly

Needs and challenges for Smart Factory in fabs

Structure of conventional FDC approaches

Data science to current FDC functions

- 1. Motivation
 - a. Smart Factory needs and challenges
 - b. Conventional FDC approach
 - Data science makes it worse
- 3. Time Series Al
 - a. Autoencoder approach
 - b. Al inputs and
 - c. Learning data volume
- 5. Conclusions
 - a. Al to improve human productivity
 - b. Advantages of Time Series A
 - c. Future Work

- 2. Goals and objectives
 - a. Better FDC automation goals
 - b. AI FDC approach

- 4. Time Series Al results
 - a. Time-oriented anomaly
 - b. Time-frequency anomaly
 - c. Frequency anomaly

Better FDC automation means

Engineer productivity

- No human labeling or anomaly detection setup
- 2. No human involvement on window and indicator definitions

Result quality

- Anomaly alerts: High accuracy and reasonable false alerts
- Rare condition classification: High accuracy from low counts

Process complexity

- 1. Work across tools and products
- Continuously learns even as recipes change

Knowledge digitalization

- 1. Isolate interesting failure modes
- 2. Precise findings against specific time steps

Time Series AI approach and reduction of engineering effort

- 1. Motivation
 - a. Smart Factory needs and challenges
 - b. Conventional FDC approach
 - Data science makes it worse
- 3. Time Series Al
 - a. Autoencoder approach
 - b. Al inputs and
 - c. Learning data volume
- 5. Conclusions
 - a. Al to improve human productivity
 - b. Advantages of Time Series A
 - c. Future Work

- Goals and objectives
 - Better FDC automation goals
 - b. AI FDC approach

- 4. Time Series Al results
 - a. Time-oriented anomaly
 - b. Time-frequency anomaly
 - c. Frequency anomaly

Falkonry Time Series AI: A human efficient time series learner

Encodings

Autoencoder seeded with ramps, sines, and sawtooths

Organize data into tiles at every order of time magnitude

US Patent: <u>11295414B2</u>

CVAE needs context to learn: Tiles provide adjacent values

Final learning requires small amounts of data

Approximate extent of data for learning	Sampling frequency (resolution)	
A few seconds	1kHz (1 ms)	
A few minutes	100Hz (10 ms)	
Many minutes	10Hz (100 ms)	
A few hours	1Hz (1 s)	

- 1. Motivation
 - a. Smart Factory needs and challenges
 - b. Conventional FDC approach
 - Data science makes it worse
- 3. Time Series Al
 - a. Autoencoder approach
 - b. Al inputs and
 - c. Learning data volume
- 5. Conclusions
 - a. Al to improve human productivity
 - b. Advantages of Time Series A
 - c. Future Work

- Goals and objectives
 - Better FDC automation goals
 - b. AI FDC approach

- 4. Time Series Al results
 - a. Time-oriented anomaly
 - b. Time-frequency anomaly
 - c. Frequency anomaly

Anomaly spotting in unsegmented data from continuous operations

More severe anomaly in reactor temp than cooling water outlet temp

Electrical signal anomaly analysis

Time-oriented anomaly

Time-frequency-oriented anomaly

- 1. Motivation
 - a. Smart Factory needs and challenges
 - b. Conventional FDC approach
 - Data science makes it worse
- 3. Time Series Al
 - a. Autoencoder approach
 - b. Al inputs and
 - c. Learning data volume
- 5. Conclusions
 - a. Al to improve human productivity
 - b. Advantages of Time Series Al
 - c. Future Work

- Goals and objectives
 - Better FDC automation goals
 - b. AI FDC approach

- 4. Time Series Al results
 - a. Time-oriented anomaly
 - b. Time-frequency anomaly
 - c. Frequency anomaly

Time Series AI makes SMEs more productive with data

Advantages of Falkonry Time Series AI

Engineer productivity

- No human labeling or anomaly detection setup
- No set up/tuning segment boundaries, indicators or parameter bands

Compute efficiency

- Single pass learning
- Compute scales linearly with signals
- Works against > 1kHz signals
- Uses well tested CVAE and GPU Tensor RT infra

Process complexity

- Work across tools and products with normalized anomaly score
- Learns continuously and independently of recipes and products
- Ignored anomalies are learned as normal

Knowledge digitalization

- Precise findings against specific time steps
- ✓ Isolates previously unobserved faults without labeling

Future Work

Speed anomaly comprehension

Simplify understanding of anomalies over time and signals through grouping, multivariate analysis, and step marking

Rare condition classification

Use embeddings as feature vectors to create classifiers from two or three failure instances

Search for similar behavior

Assist in root cause analysis by finding similar behavior based on embedding similarity

Field deployment

Field deployed architecture reduces data transmission need and provides immediate awareness of problems

