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ABSTRACT 

Recently, Artificial Intelligence (AI) and Machine Learning (ML) techniques have been used to solve complex operations 
problems. However, scaling ML/AI across a multitude of equipment types and use cases, a variety of signals, and over 
time with changing operations remains a significant challenge. This paper discusses how Falkonry's Operational AI 
platform learns, detects, and predicts conditions in continuous casting. This methodology is scalable across use cases and 
time without the need for data scientists. Precedent detection of impending equipment failures allows operations to 
schedule necessary maintenance interventions, thus avoiding loss of production due to unexpected downtime events. 
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INTRODUCTION 

The advent of IoT sensors, edge devices, and connectivity standards in factories has pushed data collected from industrial 
automation projects into the cloud. This new data availability has spawned a revolution in both the underlying methods 
and scale of data analytics – creating smart factories whose performance and behaviors are managed by digital 
interpretation of data. Insights are no longer limited to human inspection and domain knowledge but are now acquired 
using digital technologies and practices. Machine learning methods have emerged onto the industrial landscape and are 
rapidly evolving to meet the demand for this next generation of digital insights. 

Industries that have the maturity and foresight to ride the wave of new and smart factory innovation have tremendous 
potential to create a competitive advantage by boosting productivity and increasing revenues. For example, cost savings 
can come from predicting equipment failures, shifting the emphasis from preventive to predictive maintenance, freeing up 
otherwise lost production time for incremental revenue generation.  

Despite the evolution of sensors, devices, cloud computing, and innovations in machine learning, many factors challenge 
the practical application of machine learning and artificial intelligence in operations at scale. Scaling across multiple 
equipment types and use cases is one such challenge. Traditional approaches by data scientists and use-specific software 
development simply cannot scale - even with “auto ML”[1], shortening the machine learning cycle for algorithm selection. 
Not only is the custom-ML development cycle a substantial impediment to scale, so too is the effect of time on ML models 
as underlying production equipment is upgraded, raw materials change, product mixes evolve, and new failure modalities 
emerge through long-term use. Any or all these changes render custom-crafted ML models moot, leaving the manufacturer 
without a critical continuous analytic tool.  

This paper presents Falkonry’s Operational AI as one solution to the challenges of scaling machine learning and AI in 
manufacturing. This intelligence-first approach[2] [3] to creating machine learning applications is based on a consistent, 
repeatable, time series classification technique robust to incomplete and irregular data, engenders expert knowledge 
capture, and leads to real-time actions to positively affect production. Underlying challenges in the real-time application 



 

of Operational AI to production systems are discussed. This paper further presents a real-world case study and how 
Operational AI is applied in steel manufacturing at production scale to predict equipment failure to reduce unexpected 
downtime, thus increasing equipment availability for revenue generation. Results and advantages of Operational AI 
approach from application to casting operations are discussed, followed by conclusions.  

OPERATIONAL AI AND CHALLENGES 

OPERATIONAL AI 

Operational AI is a software platform to enhance operational excellence by avoiding operational events that disrupt 
manufacturing and production operations. As such a broad set of problems need to be solved for increasing operational 
excellence, such as reducing downtime, reducing injuries, increasing throughput, enhancing capacity utilization, reducing 
cycle time, increasing yield, reducing work-in-progress inventory, lowering mean cost per unit, reducing and eliminating 
defects and lowering changeover time. For such operational excellence solutions, Operational AI needs to offer a broad 
set of process and asset-agnostic capabilities.  

Operational AI functions by applying computational methods to operational data to discover and report behaviors that 
engage operational experts and solicit their know-how through accessible interfaces. Operational AI is easy-to-use in that 
front-line practitioners (such as manufacturing engineers, reliability engineers, process engineers, maintenance managers, 
and those with similar experience) can use themselves. Operational AI produces applications that predict undesirable 
system behavior and can be evolved without assistance from data engineers or data scientists. Operational AI emphasizes 
solutions that enable front-line subject matter experts to use the solution on their own. Results are achieved more rapidly, 
scale more quickly, and do so at a lower cost than traditional AI allows because the coordination and direct costs of data 
science specialists are not required. In this paper, the term “Operational AI” refers to Falkonry’s Operational AI platform 

[4]. 

Various manufacturing sectors such as energy, chemical, pharmaceutical, and metals need Operational AI today [5] [6] [7] [8]. 
AI/ML techniques prove to be promising for a variety of manufacturing applications across the value chain. These 
applications accelerate decision-making, minimize unanticipated failures, and improve logistics and utilization of 
resources.  

Figure 1 shows Falkonry’s Predictive Operational Excellence framework.   

 

Figure 1: Falkonry’s Predictive Operational Excellence Framework 
*(the green boxes highlight application related to use cases described in this paper) 

 

Operational Technology Layer 
Operational Technology consists of fine-grained, high sample rate data collected at the sensor and control level. Values 
such as Volts, Amperes, Hertz, bar, degrees, and position are sampled at rates as high as microseconds. These data originate 
from “operational technology,”[9] or “OT,” sources that are part of the manufacturing systems. These OT sources include: 



 

● SCADA (Supervisory Control and Data Acquisition),  

● plant historians,  

● IoT sensors 

● HMI (Human-Machine Interface),  

● PLCs (Programmable Logic Controller),  

● DCS (Distributed Control System) 

● process control systems, and 

● alarm management systems 

Operational AI  
Operational AI performs data normalization, aggregation and analysis. Operational AI transduces the fine-grained data 
from OT1 into actionable insights through discovery and detection of both known and novel operating conditions. 
Operational AI provides an explanation of detected conditions to assist with root cause analysis and an estimation of the 
remaining time to events of interest (such as consumable replacement or time to failure). Through practitioner interaction 
with digital twins and plant analytics, digital insights and recommendations are translated into decisions and converted to 
actions by sending workflow instructions to operational management systems. 

Operational Management  
Operational Management connects insights and recommendations from Operational AI to business operations and 
management processes, bringing intelligence to the overall operations facilitating business value objectives. Operational 
AI processes fine-grained OT data and turns it into inputs and recommendations for Operational Management systems.  

The flow of information from OT sources through Operational AI to Operational Management systems maximizes value-
creation across domains such as equipment maintenance, plant design, manufacturing management, energy management, 
and quality control while focusing on factors like costs, schedules, risks, and business priorities. 

CHALLENGES 

Numerous challenges stand before the innovative steel manufacturer intent on increasing productivity without new capital 
investment using existing capital assets. Continuous casting of steel is a well-understood process. Once a caster is put into 
operation, the manufacturer can do little to change the physics of the caster to change rated production throughput. Rated 
throughput, however, is not continuously attainable in real-world applications. 

Despite the maturity of continuous casting equipment and casting operations, valuable production time is lost to 
unscheduled downtime events in real-world applications. An “ordinary” continuous caster producing 150 tonnes per hour 
can generate $2,500,000 per day in production revenue. Conversely, a single day of lost production loses that equivalent 
$2.5M. Therefore, a manufacturer can release tremendous stored potential value by eliminating unscheduled production 
downtime.  

Casting molten steel, not surprisingly, is hard on heavy equipment. Components wear under harsh conditions leading to 
failures or adverse product quality. However, the opportunity exists to apply machine learning techniques to detect early 
evidence of conditions leading to equipment failure. Early detection of such conditions is a warning to maintenance and 
production scheduling managers that downtime needs to be scheduled for repair before failures occur. Therefore, the first 
challenge is developing a machine learning application that can detect those early conditions that predict equipment failure 
and not being distracted by other operating modes that inevitably arise in industrial operations.  

The next challenge is deploying ML applications into a production environment. Sensor and machine parameters are often 
available in SCADA, PLC, or from a data acquisition system such as IBA[10]. An Operational AI platform uses such 
operational data to create Operational AI applications that predict conditions observed in that data and these systems 
contain data that is not systematically normalized for machine learning. Operational AI platforms may use a small amount 
of recent data or large amounts of historical data to create applications for specific failure or operational modes that indicate 
pre-failure conditions. Operations practitioners need to be able to deploy those applications into continuous operation 
                                                                    
1 Sometimes data used by Operational AI may not originate in OT, such as raw material characteristics and production plan.  



 

without costly and time-consuming software development and evolve them quickly over long periods of usage. The 
Operational AI platform must fit within the steel manufacturers’ overall data and operational management software 
architecture. It must receive raw data while also providing insights to manufacturing management systems such as asset 
performance management (APM) or computerized maintenance management systems (CMMS).  

Creating and deploying ML/AI applications for detecting and predicting equipment maintenance requirements is further 
complicated by two main issues: 1) relatively infrequent actual problems and 2) changes to operations over time. Industrial 
operations insist on maintaining low variance and long MTBF. As a result, problem conditions tend to be rare and unique 
- meaning that what one believes today to be a “complete” design will invariably miss a future, previously unknown, failure 
mode. Over the ordinary course of plant operations, maintenance will be performed, and operating conditions will change. 
Replacement parts may have different characteristics than original parts. Operating modes will evolve, and products will 
change as raw material sources shift to accommodate market, demand, and product dynamics. Furthermore, both of these 
challenges mean that ML/AI approaches must be self-regulating for change and agile to execute required changes. This 
requires Operational AI to be capable of discovering conditions on its own for being managed by operational experts. This 
characteristic is one of the most challenging requirements for Operational AI 

Operational AI approaches are prone to being overwhelmed by industrial and computational scale. Though one can brute-
force model development with custom data science methods, the more significant challenge is scaling models across the 
hundreds of diverse applications from casting to milling to finishing and the dozens of failure modes for each along with 
the different root causes of these failures. The computational scale of Operational AI can see thousands of parameters, 
terabytes of data, hundreds of assets in a single plant. A scalable Operational AI platform must provide a usable, consistent 
methodology that can be applied against use cases from rotating to static equipment such as winders, rollers, and thermal 
patterns of caster molding segments.  

Perhaps one of the most significant challenges of machine learning, as applied to predictive operations, is estimating the 
remaining time to a required maintenance or failure event. Detection of a condition that represents an early indication of 
needed maintenance or a failure is essential, but insufficient to affect manufacturing operations. The operations team needs 
to know how long before the predicted event to adjust operations and maintenance to avoid that event. The time horizon 
in advance of a critical event is non-trivial to estimate. Furthermore, production operations are dynamic, meaning that the 
conditions, raw materials, production rates, and steel grades are not static but change with the dynamics of production 
schedules. To estimate the event horizon for maintenance, a machine learning capability for event horizon estimation is a 
critical component of an effective Operational AI platform. 

 

METHODOLOGY 

To address the aforementioned challenges, Falkonry’s Operational AI methodology includes two sections: a Machine 
Learning Pipeline and a Service Infrastructure. 

MACHINE LEARNING PIPELINE 

In the machine learning pipeline, analysis (learning and inference) and application development occur in the context of a 
datastream. This concept unifies both historical and real-time data for analysis. A datastream combines signals and entities 
into an abstract structure representing a use case or a class of equipment. Each entity in a datastream represents a distinct 
object in that class (e.g. compressor) and the approach allows applications to target multiple similar equipment or use cases 
to be solved with a single application. The analysis of a datastream comprises four distinct stages of machine learning 
employed in a sequence, as shown in Figure 2, which is the internal structure of an ML application. 



 

 

 
Figure 2: Analysis Pipeline inside an ML application 

 
The output of an Operational AI application is an “assessment”. It represents the current condition of an entity in that 
application and is produced at a desired time interval. An assessment value can be either a condition classification or an 
event horizon estimate for a given entity and timestamp. The condition classification assessment provides a condition label, 
the confidence in that label, and the explanation scores for each of the signals that form a part of that datastream. The event 
horizon estimate assessment provides an estimate value and a confidence interval in that estimate. 

Before the Operational AI application can produce near real-time assessments, its machine learning pipeline must first 
learn a model from training data. The application may be validated by analyzing a distinct data set from that used for 
training. The four stages of the ML pipeline follow: 

Automated Feature Extraction 
Operational AI is intended to extract information from signals produced by the operation of systems and their effect on the 
resources consumed in the operation. This operation is observed in signals that are collected by Operational Technology. 
Falkonry’s Operational AI operates on patterns present in such multivariate data. An operational pattern of an entity at 
time t comprises the trends in multiple signals of that entity as seen over a period of time leading to at a point t. We can 
treat this pattern as a condition.  

Falkonry’s Operational AI discovers operational patterns and this process depends on automated feature extraction. An 
unsupervised approach to learning features is used, with the goal of producing a feature vector at each required time t to 
represent the pattern at time t without knowledge of downstream clustering or classification. The feature vector should 
consider shapes and waveforms in each of the signals and minimize dimensionality for efficient processing. The feature 
extraction approach adapts to vagaries of industrial data production such as irregular sampling, multiple independent data 
sources, noise, gaps and compression as well as different data types - numeric and categorical. 

The stage is based on a composition of standard signal processing techniques. This stage uses adaptive windowing to 
optimize the use of data history. The stage can take advantage of signal metadata provided by the user (such as data type 
or maximum allowed sampling interval) but does not require algorithm selection by the user. This design approach to 
automated feature extraction eliminates expensive data preparation efforts that are repeated for each application. 

Condition Prediction 
This stage aims to produce a condition value at every required time t based on the feature vector produced by the automated 
feature extraction stage for that time t. The reported condition at time t may be one of the following: 1) a user supplied 
label, 2) a system generated label, or 3) unknown. To do so, it uses two additional pieces of information - labeled events 
and the desired degree of generalization. Each labeled event included for condition prediction, also called a fact, carries a 
start and end time as well as a condition label. Facts may be either ground truth or hypothesis to be tested. The desired 
degree of generalization controls the degree of tightness of match between supplied labeled event and patterns arising at 
other times and results in a choice between high reliability or high predictability. This approach is referred to as semi-
supervised learning and produces a condition value even when no example data is provided.  
 



 

During this stage, feature vectors are first clustered dynamically and a cluster identity is attached to every feature vector. 
This first step does not depend on the time order of feature vectors and can be called time-free. In the second step, feature 
vectors supplemented with cluster identity are combined with facts in a classifier to produce a percentage match for each 
feature vector to the feature vector for each of the fact labels. The result of this stage is further resolved down to a single 
condition label by using the generalization factor and to isolate anomalies into the unknown condition. The highest match 
percentage is used as the confidence in the label of the condition value. 
 
The conditions predicted by Operational AI can be selectively reviewed and labeled with the help of experts from the 
operations team and this stage repeated. In this way, experts’ domain knowledge is digitally recorded and is also available 
for future applications. 

Explanation 

The previous stage outputs most of the condition assessment for the datastream. For every assessment, the datastream also 
provides a measure of each signal's contribution to making that assessment’s condition label (called an "explanation 
score").  Explanation scores range from 1 (highest contribution) to 0 (no contribution) to -1 (contradicts the assessment 
but was outweighed by other signals). Explanation scores are calculated per assessment using the condition label and the 
feature vector from each signal (internal to the condition models). For each signal, the feature vector ("assessment point") 
is compared against a sample of the feature vectors used during model learning ("sample points"). The algorithm draws a 
neighborhood boundary around the assessment point to find the nearby sample points. Among these nearby neighborhood 
sample points, the ratio of points with the same, vs. a different condition, as the assessment is found. This ratio is calculated 
for all the sample points (not just the neighborhood). These two ratios are used to calculate the explanation score. 

Event Horizon Estimation 
The final stage in the ML pipeline is Event Horizon Estimation[11]. Event Horizon is defined as the length of time until the 
occurrence of some target event, such as a system failure or a readiness level. As illustrated in Figure 3, this estimate 
(shown in orange) fluctuates as operating characteristics change and intervention measures are taken. The estimated time 
to event, i.e., the event horizon (shown in blue), decreases as target events are approached and resets after interventions. 
Changes in operating characteristics impact how target events unfold. The reliability of any estimation approach requires 
a dynamic calculation that accounts for these changes. For example, a change in the recipe being applied in production can 
markedly increase component wear, causing a decrease in the event horizon estimate.  

 

 

 Figure 3: Illustration of event horizon estimation 

 
SERVICE INFRASTRUCTURE 

The Operational AI platform is designed for easy deployment into IaaS (Infrastructure as a Service) environments like 
AWS or Azure or into privately managed compute and storage infrastructures running a container-compatible Linux 
operating system. Figure 4 presents the overall architecture of the application deployment. 
 



 

 

Figure 4:  Application deployment architecture 

 

CONTINUOUS CASTING APPLICATION 

CASE STUDY DESCRIPTION\ 

As established earlier, existing casting operations are prone to unplanned downtime, affecting equipment reliability and 
availability. The Operational AI methodology described in the previous section has been applied to multiple continuous 
casting components, including:  

● Mold oscillator - prediction of oscillator failure 

● Bending rolls - prediction of bending roll failure 

● Dummy bar - prediction/detection of dummy bar misalign and disengagement failure 

● Straightener - prediction of stuck roller  

● Segment roller - identification of segment roll failure, misalignments, and high roller stress 

● Pinch rollers - prediction of pinch roller failure 

● Shears - prediction of shear failure 

 

ML applications for over 50 different use cases were developed for this equipment and deployed live in production 
operations. Table I provides information on selected Operational AI applications for the continuous casting operations. 
The casting components differ in the nature of their operation. For example, the continuous casting mold oscillator operates 
continuously, whereas the shears (or scissors) for slab cutting operate periodically. The cars carrying rolled coils operate 
on demand. The signals data came from a variety of sensors sampling at different rates. Sampling rates ranged from 
milliseconds to seconds, depending on the operations. With Operational AI, distinct applications for these use cases were 
deployed live within 18 months, around two weeks for each use case, with one person for data selection and connectivity 
and two part-time users supporting ML application development and validation. 

 

 

 

 

 



 

Table I: Select information on Continuous casting AI applications 

Equipment 
type Use Cases Data Initially 

Considered 
Data Eventually 

Used ML Approach 
Application 

Development 
Time 

Mold oscillator Oscillator health 130 parameters 
135GB 

1 month, 
29 parameters 

Unsupervised, 
Semi-Supervised 

20 iterations 
over 12 hours 

Bending rolls Precursors to 
jammed rolls 

30 parameters 
100GB 

7 months, 
9 parameters Semi-Supervised 20 iterations 

over 12 hours 

Dummy bar Precursors to 
failure 

21 parameters 
68GB 

6 months, 
8 parameters Semi-Supervised 20 iterations 

over 6 hours 

Straightener Precursors to 
jammed rolls 

17 parameters 
10GB 

2 months, 
15 parameters Semi-Supervised 10 iterations 

over 10 hours 

Segment roller Precursors to 
jammed rolls 93 parameters 

360GB 

5 months, 
9 parameters Semi-Supervised 35 iterations 

over 40 hours 

Segment roller Segment bulging 4 months, 
15 parameters Semi-Supervised 20 iterations 

over 30 hours 

Pinch roller Precursors to 
failure 

40 parameters 
90GB 

8 months, 
8 parameters 

Unsupervised, 
Semi-Supervised 

40 iterations 
over 50 hours 

Shears Motor health 5 parameters 240 
GB 

1 week, 
1 parameter 

Unsupervised, 
Semi-Supervised 

5 iterations 
over 5 hours 

 

Figure 5 shows the flow of the applied Operational AI-based predictive maintenance solution: 

 

 

Figure 5: Operational AI-based predictive maintenance solution 

Automated feature extraction: Signals specific to each stage of the casting process were taken from the plant’s data 
historian. These included current, torque, motor speed, hydraulic pressure, mold level, casting speed, valve status, and 
others depending on the use case. For each use case: 

● Unsupervised learning was automatically performed. This step identified essential patterns of behavior that gave 
operational experts a better idea of different operating modes. 

● A subset of the problem periods preceding events of interest such as part failure, misalignments, or high force 
events was marked as warning periods to test the hypothesis that these problem periods could be reliably 
predicted. The Operational AI platform then performs semi-supervised learning, creating models that can discover 
and distinguish between patterns across supplied parameters to identify conditions that preceded events of interest.  



 

● The ML application, now having learned to detect and recognize the relevant operations patterns occurring before 
conditions of interest, was validated against data not used in the learning process to validate that it detected the 
precursor events and therefore could be used to predict the undesirable events of interest.  

Explanation: The Operational AI platform provides explanations of detected operating conditions by identifying the most 
responsible parameters for the detected pattern. The ability to understand which parameters are most responsible for the 
distinct condition arising at a moment in time along with the name of the condition accelerates the troubleshooting and 
corrective action determination for the predicted failure conditions. 

Event horizon estimation: After developing a validate early warning application, the next step was to augment condition 
prediction with time to failure. With one or more historical occurrences of early detection of and the subsequent failure of 
caster components, the Operational AI platform was used to develop an estimation model for predicting the time to failure 
(TTF). This estimation of the time horizon before the next failure event, or “event horizon estimation (EHE),” 
automatically adjusts its estimate as a function of actually observed parameters during real-time operation. EHE enabled 
operations teams to estimate the time until the occurrence of critical, process-affecting events. Event horizon estimates 
were used to prioritize interventions, thereby maximizing production time before taking a scheduled maintenance 
shutdown while also minimizing the probability of incurring an unplanned downtime. While this method is designed to be 
generally applicable to any use case which has a reliable condition prediction model, work is still underway to verify the 
reliability of the estimate across different use cases. 

ADVANTAGES 

The advantages of this Operational AI approach applied to continuous casting were: 

● Simple to use data integration architecture enabled connectivity and streaming of large data quantities from 
multiple sources with different sampling rates. 

● ML applications were created from multivariate data with various, irregular sampling rates, without data 
engineering effort, for equipment with dynamic operating modes. The automated, consistent, and repeatable 
development methodology enabled non-data scientist users to create, deploy, and update production-ready ML 
applications rapidly. 

● Operational AI incorporates both unsupervised and semi-supervised ML techniques enabling both discovery of 
novel conditions and recognition of specific conditions. This method blends learning the patterns of known 
operating conditions from previously captured operating data while also identifying unexpected and novel 
conditions in real-time operational data. Therefore, this learning system provides benefits for a wide range of use 
cases over time and without needing data scientists to develop or maintain these applications.  

● ML applications were easily exported for deployment as stand-alone, fully functional, containerized runtime 
Analyzers deployed on virtual machines or at the edge on gateway processors. The deployment architecture 
chosen produced real-time predictions predominantly in the cloud, but certain low latency applications were 
deployed at the edge with constrained resources. 

The Operational AI platform handled many different types of sensors, non-preprocessed and irregularly sampled data with 
multiple time scales, worked with minimal or even no ground truth data and created condition assessments with cause 
explanations that were found interpretable to the degree that operators could make timely decisions to improve their 
production systems. These applications run in realistic environments and provide usable real-time insights that address 
business needs while overcoming the challenges associated with machine learning, ease of adoption, scalability, and 
deployment. 
 
RESULTS 

The application of Operational AI provided visibility into day-to-day operations, including timely alerts of asset condition 
to the production operations team. It recovered what would have been production hours lost to unanticipated failures in 
vertical casting and hot rolling operations. Conditions preceding failure were detected by the Operational AI from one to 
three weeks in advance of actual failures. Figure 6 illustrates sections of the continuous caster where the application of 
Operational AI yielded advance notifications to failures.  

 



 

 

Figure 6: Benefits across ML applications 

 

Figure 7 shows one implementation of Operational AI. The top line in the user interface shows a timeline indicating already 
scheduled maintenance events. The Operational AI application assessment timeline shows intervals during which detection 
of conditions known to precede failure were seen. Note that the gap between the occurrence of these conditions is 
decreasing.  

The interface also explains the equipment’s condition illustrated by the ranked cause explanation of parameters to the 
specific application. The legend indicates the relative importance between each parameter during the periods that the early 
warning conditions were detected. As the failure point approaches in this example, the relative importance of signals 
increases.  

The interface also illustrates the event horizon estimation prediction over time. As the equipment is operating, steel grades 
and rates of production throughput may change. EHE dynamically adjusts the predicted failure rate over the course of the 
production operation. The event horizon estimation helps reliability teams make decisions about the priority of early 
warnings and when to perform maintenance. After maintenance has been completed, the patterns of operating parameters 
post-maintenance will return to “normal.” If, however, maintenance does not resolve the equipment problem or is 
performed incorrectly, the EHE will not reset, thereby providing a method to confirm correctness of maintenance 
procedures based on actual production data.  



 

 

Figure 7:  Illustration of early warnings, parameter importance and event horizon estimation  

 

CONCLUSION 

In this work, we discussed the challenges of using AI/ML techniques to improve plant operations. We presented our 
Operational AI vision and demonstrated a real-world case study in steel manufacturing. We presented the summary of 
benefits of the steel manufacturing use cases across various equipment with the detailed application-building and 
deployment approach.  

The main conclusions from our work in the space of Operational AI are: 

● An intelligence-first approach reduces time-to-first-value. Reducing time-to-first-value enables plant and 
manufacturing executives who believe in the potential of Operational AI to prove their intuition quickly and with 
low risk [12]. 

● The reduction in time-to-first-value removes many hurdles to scaling across multiple equipment, use cases, and 
time. Plant managers can implement Operational AI without asking for significant corporate resources and plant 
engineers can discover insights and improve production.  

● An intelligence-first alternative to the more conventional data-first approach lowers AI implementation risk, 
which can often stall value realization. Full deployment of a global data architecture can be deferred until 
optimization is required to more efficiently capture production value otherwise lost to unscheduled downtime. 

● Operational AI makes possible rapid testing and selecting, followed by fast solution deployment, from a wide 
range of hypotheses. This agile approach of rapidly iterating over models and use cases enables shorter learning 
cycles and quick identification of essential use cases. Arriving at solutions for use cases faster supports getting 
stakeholder feedback earlier than conventional methods. This agile Operational AI approach leads to time savings 
and rapid proof of value. 

● Operational AI is capable of learning from available data and improving its predictions over time. It augments 
the asset owners’ abilities by continuously learning and reporting system behavior[13]. It overcomes the time-
consuming challenges of gathering new ground truth facts, collecting new operational data sets, learning the new 
behaviors, and validating the prediction results necessary for traditional ML methods. Manufacturing leaders 



 

benefit from digitizing captured expert knowledge so crucial to the application and scaling of Operational AI. 
Operational AI is cost-effective for discovery, deployment, and scaling; and facilitates ongoing continuous 
improvement[14]. 
 

In this novel way, we are rethinking Operational AI. Operational AI is an intelligence-first approach that reduces business 
risk and lowers time-to-first value. Operational AI digitally captures expert knowledge for long-term use and enables non-
data science experts to quickly develop, deploy, and scale a wide range of ML applications ready to be used by operational 
practitioners.  
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