
“Hands-Free” Fully Autonomous, Plant-Scale, Anomaly Detection AI 
Joe Porter, Keval Bhanushali, Dan Kearns, Nikunj Mehta1 

Falkonry Inc. 
10020 N De Anza Blvd #200  
Cupertino, CA 95014 USA 

Phone:+1 408 461 9286 
Emails: {joe.porter|keval.bhanushali|dan.kearns|nikunj}@falkonry.com 

ABSTRACT 

This paper presents a self-supervised autonomous “plant scale” AI — capable of monitoring every PLC and IIoT parameter of 
a steel plant — automatically detecting and accelerating diagnosis of anomalies. Automatic anomaly detection proactively 
informs plant operations of conditions that otherwise would go undetected — leading to informed production and maintenance 
decision-making. Self-supervised AI overcomes the challenges of constant equipment, environment, and product changes that 
thwart classical machine learning approaches. Normalized severity scoring of the AI results further enable prioritization of the 
anomalies for investigation and action. We describe several use cases of this new AI in commercial operation along with the 
corresponding user workflow.  

Keywords: Generative AI, Time Series AI, Deep Learning, Time Series Analytics, Maintenance Productivity, Electrical 
Maintenance, HRT Motor, Continuous Casting, Hot Strip Mill, Condition-Based Maintenance 

INTRODUCTION 

Steel manufacturing processes are heavily automated using PLCs and generate large volumes of industrial automation data. 
This data is in the form of time series, which could rise to over 5 million data points per second per plant. The time series data 
precisely represent the state of a physical system and production process at any given point in time. However, this data is hard 
to use for troubleshooting and improving operational productivity. The advent of cloud connectivity and digitalization has 
exponentially grown the volume of data collected . For instance, a typical integrated steel plant collects over 30,000 parameters 
from automation systems and sensors. Operating conditions change from time to time as programming parameters change and 
that makes it imperative to update baseline behavior and corresponding configuration of alarms. As a result, only 1-2% of these 
parameters are monitored to provide alarms to operators. This has the consequence that operational problems are frequent, 
troubleshooting takes a long time, and expertise is not easily transferred from expert to novice. Substantially increasing the 
analysis of automation and sensor data is therefore essential to achieving smart manufacturing objectives for the industry. 

In recent years, various applications of artificial intelligence and machine learning have demonstrated the potential to harness 
some of the automation data being acquired for analysis by surfacing patterns of interest in the data. In order to fulfill the smart 
manufacturing mandate, organizations need an analytics approach that does not overwhelm the plant personnel with set up and 
maintenance. It is also ideal that such an approach exploits all available data and exposes important patterns in it. In this paper, 
we present a novel ‘Unattended AI’ that automatically analyzes all available parameters and presents the anomalous behaviors 
to the operations and maintenance users. This novel deep learning approach eliminates manual data analysis efforts and 
considerably reduces the time taken to diagnose production issues in the mill. As a result, users prioritize maintenance actions 
whether they have to be immediate intervention or targeted for a later action such as planned downtime. This paper presents 
several real-world applications of this novel ‘Unattended AI” to minimize equipment downtime and scrap occurrences, while 
reducing the manual analytical effort to raise the productivity of the people involved.  
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CHALLENGES 

Finding a Needle in a Steel Haystack 
A modern steel mill operates at high speed and a staggering scale and produces hundreds of thousands of primary data points 
each second. The expectation is that such instrumentation will allow operators, technicians, and decision-makers to reduce 
operating costs for the mill and increase production throughput. Even as this automation substantially increases operational 
productivity, the increased complexity resulting from automation makes operational problems such as stoppages, scrap, and 
safety issues harder to troubleshoot. When such issues occur, it takes a significant amount of human effort to ascertain the 
cause of such issues. Often plants employ process and reliability engineers primarily to study data acquired from automation 
systems and correlate it with operational problems. Such engineers are hard to recruit and train, and their analytical capacity is 
usually well below organizational needs. Finding evidence of the causes of operational problems from plant data is time-
consuming, and as the mill continues to run at its breakneck pace, the work of investigating problems can become an exercise 
in managing a backlog of issues while fighting fires. Automated anomaly detection would significantly ease the burden of 
addressing and avoiding issues in a steel mill, but there are several factors that make this challenging to realize:  

1. The difficulty of specifying and maintaining operational waveforms of a “golden curve” given how much they vary 
from time to time and the need to manage continuous operations as opposed to short batches 

2. The difficulty of matching operational waveforms to the right “golden curve” using rules tends to make golden curve-
based analytics fragile and error-prone 

3. Speed of operations in the mill, and the vast number of signals that must be analyzed mean that most available data is 
not used effectively, and causes are not well understood from data 

4. Bookkeeping — reliably tracking innumerable details in measurements from mill components with limited personnel 
presents a grand challenge  

5. Maintaining models — a steel mill presents immense complexity as components interact and conditions change. It’s 
essential to be able to retrain models, both to capture additional behaviors of normal operation when initial training is 
not adequate (incremental retraining), or to completely retrain a model when mill components or operating conditions 
change more dramatically 

Monitoring: Golden Curves and Rules 
Due to the scale of production in steel plants, anomalous behaviors are likely to induce operational productivity losses. As a 
result, it is very useful to monitor for anomalous behavior to be detected, characterized, and encoded into a form that automates 
the activation of meaningful alarms when anomalous behavior recurs. These alarms may be triggered by simple trends, such as 
when a particular signal exceeds a baseline level. Other conditions are more subtle, and detecting their recurrence amounts to 
measuring whether signal data has deviated too far from a “golden curve” — a previous characterization of acceptable operating 
states. Rules and golden curves are prone to error and fragile in operation — error-prone because of the manual effort needed 
to specify alarms, and fragile because signal data is inherently messy. In a true anomaly, the measured data may not reliably 
deviate from the representative data due to inaccuracies in timespan, shape, or consistency (e.g., due to persistent noise, 
transient spikes, or missing samples).  

The more significant problem with these monitoring approaches is that they are labor-intensive: If a critical signal has numerous 
discrete states, then rules or golden curves must address all of the possible valid operating states for the components being 
monitored. Creating alarms requires time and expertise. To date there has been no simple, generic, robust, automatic way to 
compare time periods to determine similar behavior across long operating times without significant manual work. 

Data Scale in an Instrumented Steel Mill 
In order to maintain the enormous throughput of a modern steel mill, speed and accuracy of measurements and controls are 
essential. Scan times must be kept tight to ensure adequate control, particularly for electrical components. The extreme speed 
of sampling and control, together with the number of signals available means that many signals and events will remain 
completely unmonitored. The simple act of identifying operating states and specifying configuration for them is prohibitive, 
except for the most crucial situations. Unfortunately, crucial situations are only determined in hindsight. When fighting fires, 
it is very hard to also investigate causes, which makes the exercise of analytics even harder. The challenge is to create a 
monitoring system that reaches the scale of the entire mill — all components at all times, and in all of their modes of operation.  

Promise of AI and Automated Monitoring 
Imagine having a data scientist working on every signal in the mill — capturing subtle variations, characterizing nominal and 
outlier behavior, and identifying which outliers lead to problems and which are benign. This is the grand challenge of automated 
anomaly detection. In our current mode of operation, we can drill down into any chosen area of operation, but we are still 
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limited by the availability of expertise. Truly automated monitoring must be capable of automatically doing the extensive 
bookkeeping required to ensure full coverage of signals and system behaviors, without requiring an army of data scientists to 
operate it. 

Automated Model Training 
Short, fixed segments of training data are useful to capture the initial behavior of a signal in order to create a model. However, 
unless we’re very lucky, the first training will not capture all of the important and acceptable variations that the signal exhibits 
operating over an extended period of time. Further, components may be changed out — which have similar but not identical 
behavior. Decisions may be made that alter nominal operating conditions, in order to improve the quality of the steel or the 
efficiency of the mill. In all of these cases, the automated monitoring system must be able to adapt to changes — if we realize 
the promise of full automation, the AI should be able to detect when additional training is needed for an existing model and 
schedule itself for training. If plant conditions have changed enough to invalidate the model, automatic retraining should start 
from scratch to produce a new model that captures the new operating regime. 

AUTONOMOUS TIME-SERIES AI 

Self-Supervised AI (CVAE) 
Our approach to “hands-free” autonomous, plant-scale anomaly detection AI is based on a self-supervised deep learning model 
called a convolutional variational autoencoder (CVAE). An autoencoder encodes its current input data in a mathematically 
compressed form (an embedding), and then attempts to reconstitute the original input from that compressed representation. The 
autoencoder approach uses the fact that during training, the model learns to faithfully reproduce signals that it has seen, so that 
at inference time, novel signals induce reconstruction error — the autoencoder hasn’t yet learned how to represent that novel 
input. Therefore, we use a measure based on reconstruction error to characterize the novelty of any given input, indicating a 
potential anomaly. This measure uses specially designed normalized statistics in order to be independent of the signal 
characteristics — this allows the error to be easily compared from one signal to another. 

 
Figure 1. Examples of synthetic training signals. 

We’re able to avoid the large training data requirements typical of deep learning models because we use synthetic data to 
bootstrap the model, followed by a much shorter fine-tuning training step on actual plant data that adapts the autoencoder to 
the characteristics of specific signals. Time series ML is unique, in that it is very amenable to the use of synthetic training data 
— time series signals encode information temporally, in the value domain, in the time domain and in the frequency domain. 
We can use standard signal waveforms (sawtooth, square wave, sinusoid, etc…) in random combinations to bootstrap a generic 
CVAE model for time series data. This generic model is then used repeatedly to initialize signal-specific models. In our 
experience working with tens of thousands of signals, we have seen that the generic model can be fine-tuned to create a usable 
signal-specific model with as few as 1,000 samples, regardless of the sampling rate of the data. 
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Figure 2. Diagram depicting training data organization for the CVAE. ‘Level’ indicates a preset sampling rate, and high level 

corresponds to low sampling rate (and vice versa). A single autoencoder instance will be trained with data from multiple 
levels. 

For times series data, the CVAE architecture requires that each training sample contains a large amount of context. We feed 
multiple values at once to the autoencoder in a data structure we call a cell. Furthermore, we train with data at different sampling 
rates, using many more high resolution cells than cells at lower resolution, in order to capture subtle details of the training 
signal. We model sampling resolution as levels, which correspond to preset sampling rates. These levels follow an exponential 
arrangement. Level 6 represents the millisecond resolution and would be used when data is sampled faster than 100 Hz. 
Likewise, Level 9 represents the second resolution and will hold data if there are any samples taken at a one second level or 
faster. As Table 1 shows, our CVAE architecture will consume data at every level which is available for the given signal. There 
will be roughly 10 times more data at any level compared to a level that is just 1 higher. This arrangement of levels, which we 
call tiles, is also very helpful for storage efficiency and visualization.  

Table 1. Data required for Learning at Different Time Resolutions 
Approximate extent of Data 

from learning 
Sampling frequency (resolution) Level 

A few seconds 1kHz (1 ms) 6 
A few minutes 100Hz (10 ms) 7 
Many minutes 10Hz (100 ms) 8 
A few hours 1Hz (1 s) 13 

 

For training and inference, we start with a block of time series samples. The samples are then divided into cells, which are 
further divided into episodes. An episode is a representation of a single window of samples and is the input unit for a single 
training or inference step of the machine learning model. For a particular signal, the data acquisition can be configured to 
distribute data within the cells. Configuration controls the quantity of data represented in each episode, as well as the 
distribution of data summarized within the episode. Multiple episodes are consumed in parallel in a batch of training or 
inference data for a single model, and multiple models can be run efficiently on the same GPU, allowing us to scale the compute 
resources to reach the scale of the signal data to be covered in the mill. 

The final requirement of the hands-free autonomous architecture is automated improvement, i.e., incremental learning. For any 
given signal, we expect the anomaly scores to remain low most of the time. If a model has not been trained sufficiently, or if 
the distribution of the signal being monitored has drifted from the distribution that the model originally learned, then we expect 
to see lots of spuriously high anomaly outputs for that signal over an extended time period. It’s safe to assume that consistently 
high anomaly outputs over a long time do not correspond to catastrophic recurring failures, as those would be evident in the 
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operations of the mill. Therefore, we flag that signal for retraining, which will automatically occur as computing resources 
become available. This automated improvement is a key element of “Unattended AI” as the AI improves itself without the need 
for labeling or manual intervention. “Unattended AI” is the only viable approach when dealing with thousands of signals, as it 
becomes difficult to coordinate different parties to conduct incremental learning. 

Advantages 
Our machine learning architecture has several significant features that allow us to make the claim of ‘hands-free’ fully 
autonomous, plant-scale anomaly detection AI: 

• Self-supervised learning — no need to annotate examples, as we need only provide adequate data samples for each 
monitored signal. A CVAE model captures all of the subtle variations and operating modes represented in each signal, 
implicitly representing the information that a data scientist would study in order to develop models for monitoring. 

• Low sample requirements for training — because of synthetic pretraining, a few thousand samples can suffice to create 
a model for any signal. 

• Robust data representation — avoid problems with extreme and missing values, and differing sample rates while 
eliminating the need to prepare data ahead of machine learning. 

• Automatic retraining — unattended self-improvement of each model via retraining criteria. 
• Normalized anomaly scores — by normalizing the anomaly scores, anomaly measures can be compared across signals. 

This allows us to automate the aggregation of anomaly data within components to facilitate user navigation of signals 
exhibiting unusual behavior. 

These criteria enable full-scale monitoring of signals in the mill without the manual effort of data collection, analysis, and 
model-building. 

Deployment of Plant-Scale AI 
Beyond the usual operational considerations required to deploy machine learning models in production (e.g., cloud vs. on-
premise, managing data storage, connectivity, security, and availability), we focus on a few important capabilities that support 
the ability to scale to the level of operations needed to ensure hands-free autonomy while ensuring cost controls — elastic 
compute clusters, and custom job scheduling.  

Kubernetes allows us to control costs through the use of autoscaling and resource limits. Compute resources are costly, so they 
are only used as needed. Kubernetes automatically spins up new compute resources as they are required, up to configured 
limits. This allows decision-makers to budget for the needed compute resources and ensure that those cost limits are met.  

Custom job scheduling allows us to manage the number of training and inference jobs that run on GPU nodes. CVAE models 
are not GPU memory-intensive, so several models can be run concurrently in a single GPU. Our custom job scheduling controls 
the loading and unloading of CVAE models, and the efficient streaming of sample data from online storage during both training 
and inference phases. The episode construction is done with the GPU, further increasing the efficiency of data movement and 
computation. 

APPLICATION AND USE CASES 

To demonstrate the capabilities of plant-scale automated anomaly detection, Falkonry Insight, a proprietary software system, 
was deployed to the hot mill process data of a US steel manufacturing plant. A hot mill process includes multiple stages such 
as roughing mill, crop shear, finishing mill, slab grinder, plate shop etc. where high temperature steel is converted into desired 
shape and dimensions. The entire portion of the hot strip is highly instrumented with approximately 1,500 PLC tags producing 
time series data at different rates 1Hz to 10Hz. 

For this paper, we will focus on the finishing mill process of the hot-strip mill. The various sub-processes involved in the 
finishing mill are designed to achieve the desired final product specifications and any deviations from the normal process 
behavior can result in product defects and quality issues. Any significant deviations at this stage essentially results in bad 
product quality or an unplanned production downtime. Hence monitoring is critical to ensure the efficiency and smooth 
operation of the manufacturing process. This is where no-setup, automated time series AI from Falkonry is helpful at identifying 
anomalous behavior in an entire line, grouping relevant anomalies together and streamline root cause analysis of such anomalies 
— all for the benefit of making timely and targeted intervention actions. 

Data Sources and Signals 
The finishing mill sub-processes have around 400 signals that allow operations and maintenance teams to monitor flows, 
pressures, currents, voltages, temperatures, positions, forces, torques, tensions etc. These signals are available from the 
Finishing mill Steckels, downcoilers, cooling tables etc. where the downstream operations may be impacted by quality of 
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operations from the upstream processes. The signal information was made available for a period of around 3 months but 
Falkonry Insight required as little as a week to gather sufficient information about the operational patterns in time and frequency 
domain. Users have the ability to get a view of the anomaly state across a process / sub-processes of their finishing mill lines 
for a given time period. Further users also can quickly compare signals for different time periods and develop a quantitative 
understanding of root causes of the anomalous patterns reported by the Falkonry Insight’s automated anomaly detection. Next, 
we describe the workflow by which users can learn about anomalies that need their attention and the likely factors affecting 
the anomaly to understanding what the causes may be. During this process, no analytics expertise is needed nor is it required 
to set up or maintain the automated analytics. 

A. Using Dashboard to Prioritize Anomalous Events Requiring Action 
Falkonry Insight enables the discovery of process and machine anomalies via the Anomaly dashboard. The dashboard enables 
users to focus their attention to signals or signal groups that deviate from the standard operational behaviors. The dashboard 
organizes anomalies requiring attention and action. This view allows users to prioritize critical sub-processes/processes that 
would have the maximum impact on plant productivity and product quality. This dashboard is updated continuously as the 
automated anomaly detection infers over the continuously arriving signal data and surfaces the anomalies for the user to review 
and act upon. 

By filtering the list of anomalies for the previous 24 hours (or another relative time range) and sorting them by latest anomalies 
seen, the dashboard conveniently depicts all anomalies that were observed across different sub-processes of the Finishing mill. 
This potentially indicates to the user that there may have been an issue with a process/sub-process on Jan 24 that likely impacted 
the overall Finishing mill output. The user can then determine which anomalous equipment to analyze first based on the 
equipment location in the process (upstream/downstream) or using the severity score. From the image below it seems the 
Delivery-side Steckels and FM Cyclometer are the ones that require more immediate attention. 

 
Figure 3. Anomaly Dashboard for a finishing mill process. 

Figure 3 shows the Falkonry Insight Anomaly Dashboard for the Finishing Mill. It shows anomalies over the last one month. 
Each column header is explained below: 

1. Score — the severity or degree of anomalousness of a signal. The score can vary from 3 to 10+, with 3 indicating the 
signal drifting into an anomalous zone and 10+ indicating a highly anomalous pattern.  

2. Start Time — indicates the time when the behavior degradation was observed. 

3. Top1 , Top2, Top3 — The top 3 groups/sub-groups in the plant to which anomalous signals belong  

4. Duration — Length of the anomalous period detected by AI 

5. Total Signals — Total signals identified anomalous and are potentially related 

2117© 2023 by the Association for Iron & Steel Technology.
Shreebhooshan Badrinarayan / Falkonry, Inc.
Order # 132176 / Order Date: 6/1/2023
Copyright Association for Iron & Steel Technology



 
6. Actions — Expand the row and learn additional details about the specific row group 

Assuming the user prioritizes based on severity alone, then they would investigate the Delivery Steckel anomaly. In the anomaly 
detail view, each signal is given a severity score for duration of the anomaly based on the maximum value of severity during 
that time. For this Delivery Steckel anomaly, the detail view highlights two signals — gas flow and recoup temperature that 
had an unusual behavior. The signal charts contain two visualizations for each anomalous signal — a line chart indicating the 
signal’s value trend and a heatmap with colors ranging from light red to dark red highlighting the severity of anomalous 
behavior in the signal.  

 

Figure 4. Details of anomalous signal behavior for a high severity anomaly in Delivery Steckel anomaly. 

The anomaly detail shows that the gas flow in the Delivery Steckel jumped up 5 times of its typical operational value that may 
have led to an increase in the recoup temperature of the Steckel, which was beyond its normal range as well. This could 
potentially lower the yield of finished sheets of steel which may lead to the remainder of downstream processes being flagged 
as anomalous for that day. What is noteworthy is that no guidance was provided about normal operations nor thresholds of 
normal behavior identified.  

We show some additional examples of anomaly detail view which demonstrate different kinds of anomalies that Falkonry 
Insight can detect in a finishing mill. Figure 5 shows pressure fluctuations that are seen as severe anomalies because the pressure 
stays high and generally changes more gradually. Figure 6 shows slopes that are detected as anomalies well before the levels 
exceed/drop below normal. 

 
Figure 5. Example 1: Pressure fluctuations in a downcoiler bander. 

2118© 2023 by the Association for Iron & Steel Technology.
Shreebhooshan Badrinarayan / Falkonry, Inc.
Order # 132176 / Order Date: 6/1/2023
Copyright Association for Iron & Steel Technology



 

 
Figure 6. Example 2: Lube temperature falling and then not rising back to the desired operating temperature. 

B. Monitoring Signals at the Process/Equipment Level 
While the dashboard view provides the user an ability to identify anomalies and react, the Falkonry platform also provides the 
user a workflow to monitor signals over time to make priority decisions about planned maintenance. For this, a heatmap view 
is provided for different subsystems and is used to identify if there were more or less anomalies from one period to another as 
well as where they have occurred. A heatmap like this makes it easy to consume a lot of data in a single view and simplifies 
condition-based maintenance prioritization. Conversely, it also helps ascertain the impact of recent maintenance or equipment 
replacement. Besides this a heatmap allows users to see an overall picture that may get lost in discrete anomalies and also 
identify cause effect relations from the lead/lag behavior of anomalies. This can further accelerate root cause analysis. 

The heatmap view paints the color gradient from deep blue to bright yellow as increasing anomaly severity with shades of 
orange — yellow being the highest. Each row here represents a different signal and time flows from left to right in the same 
way as for time charts. Seen in Figure 7 is an anomaly heatmap of the finishing mill over a two week period — from January 
15th to January 31st. At the top of the heatmap is a dynamic caption that names the signal, the time period and mean anomaly 
score in the selected grid cell. From the heatmap, it's evident that two signals — Delivery Steckel recoup temperature and gas 
flow have been consistently anomalous for a long time and so it will be useful to investigate the Delivery Steckel processes. 
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Figure 7. Anomaly heatmap of the finishing mill process. 

C. Analyzing the Signal Distributions to Perform Root Cause Analysis 
Falkonry Insight provides tools to speed up the analysis of anomalies with its reporting interface. This reporting interface is 
capable of generating comparative and trending visualizations for any given set of signals and time periods. Trending 
visualizations display time plots to help users understand the operational context along with desired min-max ranges or and 3-
sigma values or set custom thresholds to understand the signal behavior. Comparative visualizations can be used to compare 
the value distribution of different signals for a given time period to other time periods or to the value distribution of other 
signals. User feedback suggests that comparative understanding of signals is often the most important tool in the quiver of 
maintenance engineers. A detailed analysis for any anomaly can be generated with a single user action. This one-click report 
generation can be accessed through the anomaly detail view page. This automated report captures information about the 
anomaly in the coversheet which acts as a note-taking document for the report. Secondly, a timeline chart is populated with the 
line chart depicting signal mean values for the anomaly period. Thirdly, a comparative value distribution view is also populated 
for the top 4 signals where each plot area compares behavior of that signal between the anomaly period and one week before 
the anomaly period.  

In Figure 4, one can see the “Create Report” button, which can be used to create a report specific to the anomaly to analyze the 
Delivery Steckel signals. One of the options after creating the report is to include any contextual signals to the timeline view 
to understand what was going on during the anomaly. This is a very common need as production recipes, lot numbers, control 
settings, and other such parameters help understand cause and impact of an anomaly. In Figure 8, while there’s some deviation 
in air flow and thermocouple temperatures for the Delivery Steckel, they don’t stand out as clearly as the gas flow and recoup 
temperature identified in the anomalous period.  
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Figure 8. Anomalous and contextual signals visualized in a timeline view through the reporting interface. 

The signal value distribution (SVD) analysis is in the form of a violin plot that demonstrates the range of signal values on x-
axis and density of the distribution via y-axis. While an auto generated analysis automatically identifies useful SVDs, users can 
add or make changes to the signals being compared and the time periods being compared. After determining that gas flow and 
Recoup temperature have an unusual behavior, the violin plots help users visualize the difference between the typical 
operational range distribution and the anomaly period distribution.  

 
Figure 9. SVD of Delivery Steckel gas flow in anomalous period compared against the operational range. 
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Figure 10. SVD of Delivery Steckel recoup temperature in anomalous period compared against the operational range. 

As Figure 9 shows, the value distribution for the gas flow goes up 1.5X in the anomaly period. Similarly, for the recoup 
temperature, Figure 10 shows that there is a nearly 10 degree increase in the recoup temperature than its operational period. 
Besides these conclusions, users find SVDs to provide additional insight from the value distribution patterns of different 
operational states. 

CONCLUSION 

In this paper, we discussed the challenges in utilizing all available industrial automation data for the proactive discovery and 
diagnosis of operational problems occurring in the mill. We presented a novel self-supervised approach for the automated 
analysis of the time series data that equips the operations and maintenance team with insights required for proactive 
troubleshooting and root cause analysis of issues. This approach works with existing data and technology infrastructure 
prevalent in steel manufacturing and eliminates the upfront setup and training efforts required to process time series data at the 
required scale. The presented example from the finishing mill demonstrates the following features and benefits of the automated 
time series AI: 

• The automated no-setup approach enables manufacturers to leverage existing mill data for smart analytics, without 
requiring costly IoT investments and time-consuming data set-up efforts.  

• This approach is not just limited to detecting known excursions and failures, but also alerting the operations team of 
unknown and novel asset behaviors that could potentially lead to critical operating conditions associated with 
productivity losses 

• Automated AI provides the operational and maintenance users with a detailed view of anomalies, their severity and 
causal factors, enabling proactive diagnosis and intervention across the plant  

• The automated and rapid learning of baseline operating behavior of assets and processes allows robust anomaly 
monitoring workflow as the equipment and operating conditions change over time, without requiring any data science 
and model tuning efforts  

• Finally, Automated AI is well-suited for diverse applications in the steel manufacturing process that involve time 
series data — from those with a few signals to those with hundreds of fast-moving time series signals. This enables 
the plant-scale deployment of automated anomaly detection without requiring specialized operational or data science 
knowledge 
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